skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sykora, Henrik T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work we propose the Step Matrix Multiplication based Path Integration method (SMM-PI) for nonlinear vibro-impact oscillator systems. This method allows the efficient and accurate deterministic computation of the time-dependent response probability density function by transforming the corresponding Chapman–Kolmogorov equation to a matrix–vector multiplication using high-order numerical time-stepping and interpolation methods. Additionally, the SMM-PI approach yields the computation of the joint probability distribution for response and impact velocity, as well as the time between impacts and other important characteristics. The method is applied to a nonlinear oscillator with a pair of impact barriers, and to a linear oscillator with a single barrier, providing relevant densities and analysing energy accumulation and absorption properties. We validate the results with the help of stochastic Monte-Carlo simulations and show the superior ability of the introduced formulation to compute accurate response statistics. 
    more » « less